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Hamiltonian systems with n 2 3 degrees of freedom 
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Received 14 January 1994 

Abstract. We consider a perturbed Hamiltonian system with n a 3 degrees of freedom of 
the form H = Ho +EH, and show that the properties of the average value of the perturbing 
function HI along the periodic orbits of~ the  unperturbed integrable part Ho supply criteria for 
non-integrability which restrict the allowed total number of independent integrals of motion. 

1. Introduction 

Only a few criteria for proving non-integrability of Hamiltonian systems of three or more 
degrees of freedom have appeared in the literature. Ziglin's theorem [ 11 has been proved for 
the n-dimensional case but it has found many applications in systems with two degrees of 
freedom (e.g. [2,3]), its applications to more than two dimensions having been made after 
the system has been reduced to two dimensions by the use of known integrals of motion 
(e.g. 14-51). Yoshida [7] has proved a non-integrability theorem applicable to n-degrees- 
of-freedom Hamiltonians which states that, if the differences between pairs of Kowalevski 
exponents pi. pi+. on a straight-line solution of the system are rationally independent, then 
the Hamiltonian cannot possess analytic integrals of motion other than H itself. 

In a recent paper [8], we offered a criterion for the non-integrability of systems with two 
degrees of freedom which was based on a well known theorem by Poincari ([9], p 233). 
In the present paper, by working along the same lines, we prove a thwrem on the non- 
integrability of nearly integrable Hamiltonian systems of n degrees of freedom with n > 3 
of the form H = HO + E&. where HO is a non-degenerate integrable part. We actually 
show that some propaties of the average value of the perturbing function HI on the periodic 
orbits of the integrable part are strongly connected with the integrability of the perturbed 
system. This average value can be considered as a scalar function on the quotient manifold 
of a resonant torus of HO with respect to the foliation induced by the periodic orbits of Ha. 
If the gradient of this function is not identically zero for a dense set of resonant ton of Ho. 
the perturbed system cannot possess a complete set of integrals, analytic in E ,  and thus it 
is non-integrable for an open interval of E around zero. On the other hand, if the rank of 
the Hessian determinant of this function equals r then the perturbed system cannot possess 
more than n - r independent integrals, including H, which are analytic in E around E = 0. 
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2. Non-existence of integrals in n-degrees-of-freedom Hamiltonians 

Consider the n-degrees-of-freedom nearly integrable Hamiltonian of the form 

E Meletlidou and S lchtiaroglou 

H = HO+EHT 

where HO is integrable, i.e. it possesses n - 1 (in addition to Ho) singlevalued independent 
integrals in involution, and suppose that we can define action-angle variables 51, wj(i = 
1, .., n) ,  at least in an open domain of phase space. We also suppose that Ho is non- 
degenerate, i.e. 

det [ -1 aZHo # 0 
aJiaJj 

a fact we will use later on. 

possesses n independent integrals H ,  @ I , .  . . , 
E = 0, i.e. Qi are expandable as 

In order to obtain necessary conditions for the integrability of H ,  we assume that it 
analytic in an open interval around 

Qi = @io + E Q ~ I  + o(E*) (i = I ,  . . . , n - 1). (3) 

By using the involution property [ H ,  Qj] = 0 (i = 1,. . . , n - 1) and equating terms of the 
same order in E ,  we obtain 

IHo, @ill + [ H i ,  Qiol = 0. 

Equations (4) and (5) have been derived by Poincari (191, p 233) and hold identically in 
phase space. Equations (4) indicate that Qio are integrals of Ho. It is known [9] that if 
H is integrable, Qi can always be selected such that Ho, 910,  . . . , Q+ip  are independent. 
This is an important conclusion since it will provide us with the contradiction needed to 
prove our main result. Another important property of @io stems from the non-degeneracy 
condition (Z), i.e. @io do not depend on the angles [9]. This holds for the zeroth-order terms 
of whatever isolating integrals of the perturbed Hamiltonian as long as the unperturbed part 
HO obeys the non-degeneracy condition. Since we are interested in disproving the existence 
of all possible isolating integrals, we will only use these two properties and relations (4) 
and (5) which are necessary conditions for all possible independent integrals Qi of H .  

Paramehizing equations (5) along the orbits of the unperturbed motion, we derive that 

where both sides are evaluated along a particular solution of Ho. 

follows: 
On any toms of Ho, the unperturbed solution is described by the angle coordinates as 

(i = 1, ..., n)  (7) 

where the wj are mod(2n) and the 19i are arbitrary initial conditions on the torus. In 
what follows, we will concentrate on the periodic motions of a resonant torus of Ho with 
frequency ratio 

wj = wit + I9j 
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where mi = a Ho f a Ji are the frequencies of the integrable part and pi are non-zero integers 
with no common.divisor. A particular resonant torus is foliated by periodic orbits with 
period 

Every periodic orbit is mapped on the quotient manifold of the resonant torus with respect 
to the foliation induced by the trivially integrable 1-forms pi+l dwl - P I  dw,+l = 0 
(i = 1,. . . , n - I), to a point with coordinates 

'pi = pi+litl - p1iti+1 mod(2nsi) (i = 1,. . . ,n - 1) (10) 

where the si are the common divisors of the pairs p1, p i+ ] .  

Qil be single-valued functions, we deduce the equations 
By integrating equations (6) along any periodic orbit on the torus and demanding that 

bTIH1,OiD]dt=O ( i = l ,  ..., E - I )  

which must hold on every solution on this resonant torus. Since.Oio are unknown, we need 
to investigate further the above equations, which can be written in the form 

By virtue of the equations of motion U), equations (11) transform to 

where ( H I )  is the average value of H I  along the particular periodic orbit and depends on the 
initial conditions iti only through the parameters qj. Thus, if we take into account relations 
(10). equations (12) become 

where 

For every integral @io of HO there exists a corresponding quantity Dj(') defined by 
equation (14). Suppose now that s integrals @ k ~ ( k  = 1, . . . , s) produce linearly dependent 
vectors D ~ ( ~ ) ,  i.e. 
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Then, the gradients of the integrals @lo, . . . , 
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HO are also linearly dependent, i.e. 

with 

If, on at least one orbit, the vector a(HI)&j is non-zero, then, from equation (13), we 
get 

and, as shown above, this leads to 
det IDf’l = 0 

If the vector a ( H , ) / a q  is different from zero on a dense set of resonant tori of Ho, on 
at least one orbit on each torus, equation (18) contradicts the fact that @i are independent 
integrals of H ,  i.e. H does not possess a complete set of integrals, analytic in an open 
interval around zero. 

In what follows, we will obtain conditions for the non-existence of a certain number 
s c n - 1 of independent integrals of H. Every such integral will supply a relation of 
the form (13). By differentiating this relation with respect to p,,,, we form the homogeneous 
linear system 

The matrix in (19) depends on the particular periodic orbit, while DjCi), according to (14). 
depend only on the selected resonant torus. The maximum allowable number of independent 
non-zero solutions of (19) equals (n - 1) - rank(M), where M is the Hessian matrix in 
(19). Let us suppose that on the set of periodic orbits of this particular torus 

where the subscript i denotes the particular torus. This means that there exists at least one 
orbit with rank(M) = ri and, therefore, the least number of independent solutions of (19) is 
allowed. Then system (19) admits, at most, (n - 1 -ri) independent non-zero solutions. On 
the other hand, equations (15) and (16) show that, if H possesses s independent integrals, in 
addition to H, then equation (19), evaluated on any periodic orbit, possesses s independent 
non-zero solutions of the form (14). which means that 

s < n  - 1 -ri 
and thus Hamiltonian H cannot possess more than (n - ri) independent integrals, including 
N, on this particular resonant torus. In order to find the maximum number of allowed 
independent integrals in the open domain of phase space where action-angle variables are 
defined, we need to consider the rank of M on a dense set of resonant ton in this domain. 
If, on this dense set, 

then it is certain that s < n - 1 - r, since, for each of these tori, n - 1 - ri < n - 1 - r .  
Thus, we may state the following theorem. 

minri = r 
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Theorem. Consider the n-degrees-of-freedom Hamiltonian H = HO + EH], where HO is a 
non-degenerate integrable part for which action-angle variables can be defined in an open 
domain of phase space. The quotient manifold Q(J1, . . . , Jn) of each resonant torus of Ho 
with respect to the foliation induced by the periodic orbits is the (n - 1)-dimensional torus 
T"-'. Let ( H I )  be the average value of HI along these periodic orbits which is a scalar 
function on each Q. Then, 

(i) if in this open domain of phase space, a dense set of resonant ton of HO is found 
such that for at least one orbit on each one of them 

for at least one i, then H does not possess a complete set of analytic integrals for 
E E ( -EO, EO) \ (01; and 

(ii) if,~similarly, on a dense set of resonant tori 

r a n k i s 1  > r  ( m , j = l ,  ..., n - I )  

then H cannot possess more than (n - - r )  independent integrals, including H ,  which are 
analytic in the same interval of E .  

3. Application to the three-dimensional quartic odlator 

We will apply the previous results to the system of three~quartic oscillators, with a weak 
coupling described by the Hamiltonian 

H = H o + E H I  = I ( P : + P , ~ + P ~ ) + ~ ( x ~ + x ~ ~ + x ~ ~ ) + E ( x I x z + x I x ~ )  (22) 

where Pi = dx;/dt, and prove that H does not possess another integral of motion VE # 0. 
The solution of the integrable part is ( [ l o ] ,  p 207) 

(i = 1,2,3)  

where hi relate to the actions and define an invariant torus, while Oi determine the initial 
point of the orbit on the torus. A resonant torus of HO is defined by the parameter 

A I  1 2  A3 
g = - = - = -  

PI P2 P3 

where pi are non-zero integers with no common divisor. The period of the orbits on this 
torus is T = 4 K / g ,  where K = K( l /&)  is the complete elliptic integral of the first kind 
with modulus k = I/&. The solution (23) on this torus'takes the form 

xi = gpi cn(gpit - Oj)  (i = 1,2,3) 

where we have omitted the modulus for simplicity. Let SI, sz be the common divisors of 
the pairs P I ,  p2 and PI,  p3, respectively. In particular, let 
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where the pairs r1z. rz and r13, r3 are relative primes. The parameters ql, 05 are given by 
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7I 
qi-I = - (p i01  - PI Pi) (i = 2,3). 

2K 
The average value of the perturbing function HI = ~ 1 x 2  + X I X ~  may be determined by 

using the Fourier expansion of the elliptic cosine ( [ l o ] ,  p 168). i.e. 

where q = e-n is the elliptic nome. The average values ( ~ 1 x 2 ) ~  (~1x3)  become 

x 
x COS { =1(2m1+ (2mi + 1)oi1} Sp1(2mt+l).p,(”;+l) 

for i = 2 , 3 ,  where 8i.j is the Kronecker delta. From the above expression, we conclude 
that ( x ~ x i )  is zero unless 

We select the integers pi to be positive and odd and work on the dense set of resonant ton 
of HO defined by this selection. Since the integers r12, r2 and r13, r3 are relative primes, 
( x ~ x ; )  is non-zero only for values of ml, mZr m3 satisfying 

rli(2mI + 1 )  = ri(2mi + 1 ) .  

2ml + 1 = (Zj + 1)ri 2mi + 1 = (Z j  + 1)rli (i = 2,3) 
for some integer j .  So (HI) obtains the form 

(HI) = Az(91) +As(%) 
where 

for i = 2,3. Note that for the selection ‘pi-1 = 71s~-~/Z,  Ai is zero while for vi-1 = 0, 
Ai # 0. This implies that the gradient a(H1) /89j  is not identically zero on the dense set 
of resonant tori, which proves non-integrability of H for E # 0 in an open interval around 
zero. 

On the other hand 

where 

which is different from zero, e.g. for f p ~  = (02 = 0, and this proves that the Hamiltonian H 
does not possess a second integral of motion, analytic in an open interval of E around zero. 
These results, however, are valid for all E since the equations of motion are invariant with 
respect to the transformation 

x, -+ cxi f -+ c-lt E + C2E 

with arbitrary c. If we select H I  = X I X I .  we can still prove non-integrability. The Hessian, 
however, is identically zero and this is due to the existence of a second integral (i.e. the 
energy along the x3-axis). 
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4. Conclusions 

Non-integrability properties of a perturbed Hamiltonian of n 2 3 degrees of freedom of the 
form (1) are investigated by studying the average value of the perturbing function H, along 
the non-isolated periodic orbits of the integrable part Ho. 

In [SI we have commented on the relationship between the criterion for non-integrability 
for two-degrees-of-freedom Hamiltonians developed there and the well known theorem of 
Poincark ([9], p 233). Part (i) of the theorem of the present paper is a generalization of the 
main result obtained in [8] and, therefore, relates to Poincar6's theorem in a similar manner. 
On the other hand, part (ii) is derived only in the case of more than two-degrees-of-freedom 
autonomous Hamiltonians. 

Poincari [9], instead of considering the dynamical properties incorporated in equation 
(5), expanded functions HI, Oil in multiple Fourier series with respect to the angles and 
obtained 

for every integer vector S = (SI, s2,. . . , sn) E Z", where Bt ,  C; are the coefficients of the 
multiple Fourier series of HI and Oil, respectively. Thus, in order to prove non-integrability, 
one has to check whether is different from zero at the dense set of points of phase space 
where 

(25) 
_ _  s . o = o  

i.e. 

for every @pi0 which means that the integrals 010, azo, . . . , HO are dependent. This leads 
to consideration of an infinite number of B; at a dense set of points and can be applied as 
a non-integrability test only if one knows the transformation to action-angle variables and 
the expression for all the coefficients of the multiple Fourier expansion of HI: or at least 
whether they vanish or not in the particular set. 

Poincari also dealt with the non-existence of a certain number of integrals for the 
perturbed Hamiltonian and he considered a dense set of planes defined by (U) in action 
space and showed that if one can find m independent directions of integer vectors S, for 
which the corresponding E: do not vanish, then the perturbed system cannot possess more 
than (n - 1 - m )  integrals of motion independent of H. On the other hand, in order to apply 
the present theorem, one needs to compute the time average of HI along the periodic orbits 
of Ho and its derivatives with respect to the initial conditions 'pi which define a particular 
orbit on a resonant tom. 
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